Problem 7 Finding Critical Values and Conf... [FREE SOLUTION] (2024)

Chapter 7: Problem 7

Finding Critical Values and Confidence Intervals. In Exercises \(5-8,\) use thegiven information to find the number of degrees of freedom, the criticalvalues \(\mathcal{X}_{L}^{2}\) and \(\mathcal{X}_{R}^{2},\) and the confidenceinterval estimate of \(\boldsymbol{\sigma} .\) The samples are from Appendix\(\boldsymbol{B}\) and it is reasonable to assume that a simple random samplehas been selected from a population with a normal distribution. Platelet Counts of Women \(99 \%\) confidence; \(n=147, s=65.4\)

Short Answer

Expert verified

df = 146. Locate critical values based on 99% CI. CI for \(\sigma\) using provided values.

Step by step solution

02

- Find the Critical Values

Using the degrees of freedom, look up the critical values \(\chi_{L}^{2}\) and \(\chi_{R}^{2}\) from the chi-squared distribution table for a 99% confidence interval. The critical values correspond to the \(1 - \alpha/2\) and \(\alpha/2\) percentiles of the chi-squared distribution with \(\text{df}\) degrees of freedom. For a 99% confidence interval, \(\alpha = 0.01\).

03

- Calculate the Confidence Interval for \(\sigma^2\)

The confidence interval for the variance \(\sigma^2\) is given by: \[ \left( \frac{(n-1) s^2}{\chi_{R}^{2}}, \frac{(n-1) s^2}{\chi_{L}^{2}} \right) \] where \(s\) is the sample standard deviation, and \(n\) is the sample size.

04

- Determine the Confidence Interval for \(\sigma\)

To find the confidence interval for \(\sigma\), take the square root of the lower and upper bounds of the confidence interval for \(\sigma^2\): \[ \text{CI} = \left( \sqrt{\frac{(n-1) s^2}{\chi_{R}^{2}}}, \sqrt{\frac{(n-1) s^2}{\chi_{L}^{2}}} \right) \]

05

- Substitute Values

Substitute the known values into the equations: \(n = 147\), \(s = 65.4\), and the critical values obtained from the chi-squared distribution table for 99% confidence with \(146\) degrees of freedom.

06

- Final Calculation

Calculate the numerical values for the confidence interval.

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

degrees of freedom

Degrees of freedom (df) is a critical concept in statistics, especially when working with sample data. It represents the number of independent values that can vary in an analysis without violating any given constraints. For a sample of size \(n\), the degrees of freedom is calculated as \( df = n - 1 \). This is because, in many statistical calculations, one data point is used to estimate the sample mean, reducing the number of independent pieces of information by one.

For example: In the given exercise, if the sample size \( n = 147 \), the degrees of freedom would be \( df = 147 - 1 = 146 \). This value is essential for identifying the correct critical values from the chi-squared distribution, which are needed to calculate the confidence interval.

critical values

Critical values are the points at which the tails of the probability distribution are defined for a given confidence level. They help in bounding the confidence interval. To find the critical values for a specific confidence level and degrees of freedom, you would reference a chi-squared distribution table.

Critical values for \( \chi_{L}^{2} \) and \( \chi_{R}^{2} \) correspond to the \( 1 - \alpha/2 \) and \( \alpha/2 \) percentiles, respectively, where \( \alpha \) is the significance level. For a 99% confidence interval, \( \alpha = 0.01 \), meaning you would look up the 0.005 and 0.995 percentiles in the chi-squared table for 146 degrees of freedom.

Example Calculation: Suppose the chi-squared values are found to be \( \chi_{L}^{2} \) = 99.635 and \( \chi_{R}^{2} \) = 206.874 for a 99% confidence interval with 146 degrees of freedom.

chi-squared distribution

The chi-squared distribution is used extensively in hypothesis testing and confidence interval estimation for variance and standard deviation. It is a continuous distribution defined for non-negative values (greater than or equal to zero). Each chi-squared distribution is defined by its degrees of freedom.

The chi-squared distribution is skewed to the right, and this skewness decreases as the degrees of freedom increase, making the distribution more symmetric. This distribution helps in determining critical values, which in turn are used to calculate confidence intervals for variance and standard deviation.

In Practice: Using our exercise data with 146 degrees of freedom, critical values from the chi-squared distribution are crucial for determining the range within which we are confident the true population variance or standard deviation lies.

variance and standard deviation

Variance \( \sigma^2 \) measures the spread of data points in a dataset around the mean. It provides a numerical value for this dispersion. Standard deviation \( \sigma \) is simply the square root of variance, offering a measure of spread in the same units as the data.

Confidence Interval for Variance: To find the confidence interval for the variance, use the formula: \[ \frac{(n-1) s^2}{\chi_{R}^{2}}, \frac{(n-1) s^2}{\chi_{L}^{2}} \]

Confidence Interval for Standard Deviation: For standard deviation, take the square root of the upper and lower bounds of the variance confidence interval: \[ \text{CI} = \left( \sqrt{\frac{(n-1) s^2}{\chi_{R}^{2}}}, \sqrt{\frac{(n-1) s^2}{\chi_{L}^{2}}} \right) \]

For the given exercise, plugging in the values \( n = 147 \), \( s = 65.4 \), and the obtained critical values, you'll calculate the numerical confidence intervals for both variance and standard deviation.

Problem 7 Finding Critical Values and Conf... [FREE SOLUTION] (2024)

FAQs

What is the critical value for a 92% confidence level? ›

The critical value for a 92% confidence interval using a z-distribution is approximately 1.75.

What is the critical value of 97%? ›

The confidence level is given 97%. Thus, the crucial value of z for a 97% confidence interval is 2.17, as determined by a z score table, which is as follows: Therefore the obtained probability for the z-score of 2.17 is 0.97.

What is the critical value of confidence level? ›

Using a Critical Value to Construct Confidence Intervals

Confidence intervals use the same critical values (CVs) as the corresponding hypothesis test. The confidence level equals 1 – the significance level. Consequently, the CVs for a significance level of 0.05 produce a confidence level of 1 – 0.05 = 0.95 or 95%.

What is the critical value for a 99 confidence interval? ›

Student's T Critical Values
Conf. Level50%99%
One Tail0.2500.005
800.6782.639
900.6772.632
1000.6772.626
36 more rows

What is the critical value of the confidence level 81%? ›

Answer and Explanation:

Now the confidence level in general is represented as where is the significance level. Hence, comparing the equations (1) and (2) the critical value for 81% confidence interval is 1.311.

What is the critical value of 91%? ›

Therefore the critical value for z α / 2 that corresponds to 91% confidence level is 1.6954.

What is the critical value of 93% Z? ›

Answer and Explanation:

Hence the critical value for 93% confidence level is -1.81. Often the critical value is positive, so the critical value is sometimes given as 1.81.

How do you find the critical value of 80%? ›

We see that in the z table, a probability of 0.9 lies between 1.28 and 1.29. Thus, the value of the critical value is approximately 1.285. Hence, the critical value of a z score for 80% confidence interval is 1.285.

What is the critical value of 86%? ›

Find the critical -value for a 86% confidence interval. Answers: 1.18.

What is the Z crit for 95% confidence? ›

The critical z-score values when using a 95 percent confidence level are -1.96 and +1.96 standard deviations.

How to know if critical value is positive or negative? ›

A critical value can be calculated at the right tail, left tail, or both tails of the distribution. The critical value at the right tail is positive, whereas the same at the left tail is negative.

What is the T critical value for a 90% confidence interval? ›

For example, a t-value for a 90% confidence interval has 5% for its greater-than probability and 5% for its less-than probability (taking 100% minus 90% and dividing by 2). Using the top row of the t-table, you would have to look for 0.05 (rather than 10%, as you might be inclined to do.)

What is the critical z-score value for a 99% confidence level? ›

Hence, the z value at the 99 percent confidence interval is 2.58.

What is a 92% degree of confidence? ›

A 92% confidence interval indicates there's a 92% probability that the actual population parameter resides within the specified range. This confidence level provides more certainty than a 90% confidence interval, yet it does not reach the assurance level of a 95% confidence interval.

What is the critical value z for constructing a 92 confidence interval? ›

From standard normal distribution tables, we find that the z-score corresponding to 4% in the right tail is approximately z∗ = 1.75. Therefore, the critical value z∗ for constructing a 92% confidence interval is approximately 1.75.

What is the critical z for 93 confidence level? ›

The Z-score for a 93% interval is roughly 1.81.

References

Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 5847

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.